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Abstract 

Let Κ be a complete ultametric algebraically closed field and Α(Κ) be the Κ-algebra of entire functions on 

Κ. For 𝑓, 𝑔 ∈ Α(Κ), in this paper, we wish to establish another representation of order and lower order of 

𝑓 ∈ Α(Κ ). Also we establish the integral representation of generalized (𝑝, 𝑞)-th relative type and 

generalized (𝑝, 𝑞)-th relative weak type of entire function f with respect to another entire function g, where 

𝑓, 𝑔 ∈ Α(Κ). We also establish their equivalence relation under some certain condition. 
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1 Introduction 

Let us consider Κ to be an algebraically closed field of characteristic 0, complete with respect to a 𝑝-adic 

absolute value |. | (example ℂ𝑝). For any 𝛼 ∈ Κ and 𝑟 ∈ ]0,+∞[, the closed disc {𝑥 ∈ 𝐾: |𝑥 − 𝑎| ≤ 𝑅} and 

the open disc {𝑥 ∈ 𝐾: |𝑥 − 𝑎| < 𝑅} are denoted by 𝑑(𝛼, 𝑅) and 𝑑(𝛼, 𝑅−) respectively. Also 𝐶(𝛼, 𝑅) 

denotes the circle {𝑥 ∈ 𝐾: |𝑥 − 𝑎| = 𝑅}. Moreover, Α(Κ) represents the 𝐾-algebra of analytic functions 

in 𝐾, i.e., the set of power series with an infinite radius of convergence. During the last several years, the 

idea of 𝑝-adic analysis have been studied from different aspects and we get many important results from 

{cf. [2], [3], [5], [6], [8] and [9]}. 

Let 𝑓 ∈ Α(Κ) and 𝑟 > 0, then we denote by |𝑓|(𝑟) the number sup{|𝑓(𝑥)|: |𝑥| = 𝑟}, where |. |(𝑟) is a 

multiplicative norm on 𝐴(𝐾). Moreover, if 𝑓 is not constant the |𝑓|(𝑟)is a strictly increasing function of 

𝑟 and tends to +∞ with 𝑟. So there exists its inverse function |𝑓|:̂ (|𝑓(0)|,∞) → (0,∞) with lim
𝑠→∞

|𝑓|̂(𝑠) =

∞. 

Therefore, for any two entire functions  𝑓 ∈ Α(Κ) and 𝑔 ∈ Α(Κ) the ratio 
|𝑓|(𝑟)

|𝑔|(𝑟)
 as 𝑟 → ∞ is called the 

growth of 𝑓 with respect to 𝑔 in terms of their multiplicative norm. 

For 𝑥 ∈ [0, ∞) and 𝑘 ∈ ℕ, Biswas {cf. [2]} defined 

log[𝑘]𝑥 = log(log[𝑘−1]𝑥)  and  𝑒𝑥𝑝[𝑘]𝑥 = 𝑒𝑥𝑝(𝑒𝑥𝑝[𝑘−1]𝑥), 

where ℕ be the set of all positive integers. We also denote log[0]𝑥 = 𝑥 and 𝑒𝑥𝑝[0]𝑥 = 𝑥. Throughout the 

paper, log denotes the Neperian logarithm. Taking this into account the order (resp. lower order) of an 

entire function 𝑓 ∈ Α(Κ)) is given by {cf. [1], [2] and [7]}. 

𝜌(𝑓) = lim
𝑟→∞

sup
log[2]|𝑓|(𝑟)

log𝑟
  and  𝜆(𝑓) = lim

𝑟→∞
inf

log[2]|𝑓|(𝑟)

log 𝑟
. 
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Boussaf et al.{cf. [1]} also introduce the definition of type (resp. lower type) of an entire function 𝑓 ∈
Α(Κ), which is also another type of growth indicator used for comparing the relative growth of two entire 

function defined in 𝐴(𝐾). having same non zero finite order in the following way, 

𝜎(𝑓) = lim
𝑟→+∞

sup
log|𝑓|(𝑟)

𝑟𝜌(𝑓)
   and   𝜎(𝑓) = lim

𝑟→+∞
inf

log|𝑓|(𝑟)

𝑟𝜌(𝑓)
,  where 0 < 𝜌(𝑓) < ∞. 

Analogously for 0 < 𝜆(𝑓) < ∞, one may give the definition of weak type 𝜏(𝑓) and growth indicator 𝜏̅(𝑓) 

as 

𝜏(𝑓) = lim
𝑟→+∞

inf
log|𝑓|(𝑟)

𝑟𝜆(𝑓)   and   𝜏̅(𝑓) = lim
𝑟→+∞

sup
log|𝑓|(𝑟)

𝑟𝜆(𝑓) . 

Definition 1.1 ({cf. [4]}): Let 𝑓, 𝑔 ∈ Α(Κ). The relative (𝑝, 𝑞)-th order and (𝑝, 𝑞)-th lower order of entire 

function 𝑓 with respect to another entire function 𝑔 are defined as 

𝜌𝑔
(𝑝,𝑞)(𝑓) = lim

𝑟→∞
sup

log[𝑝]|𝑔|̂(|𝑓|(𝑟))

log[𝑞] 𝑟
  and  𝜆𝑔

(𝑝,𝑞)(𝑓) = lim
𝑟→∞

inf
log[𝑝]|𝑔|̂(|𝑓|(𝑟))

log[𝑞] 𝑟
 

where 𝑝, 𝑞 are two positive integers. Further for any 𝑓 ∈ Α(Κ) for which (𝑝, 𝑞)-th relative order and 

(𝑝, 𝑞)-th relative lower order with respect to 𝑔 ∈ Α(Κ) are the same is called a function of regular relative 

(𝑝, 𝑞)-th growth with respect to 𝑔 otherwise 𝑓 is said to be irregular relative (𝑝, 𝑞)-th growth with respect 

to 𝑔. 

Definition 1.2 ({cf. [4]}): Let 𝑓, 𝑔 ∈ Α(Κ). The (𝑝, 𝑞)-th relative type of 𝑓 with respect to 𝑔 having finite 

positive (𝑝, 𝑞)-th relative order 𝜎𝑔
(𝑝,𝑞)(𝑓) is defined as 

𝜎𝑔
(𝑝,𝑞)(𝑓) = lim

𝑟→+∞
sup

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)
𝜌𝑔

(𝑝,𝑞)
(𝑓)

, where 𝑝, 𝑞 are any two positive integers. 

Definition 1.3: Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions having finite positive (𝑝, 𝑞)-th relative 

generalized order 𝜌𝑔
(𝑝,𝑞)(𝑓), (0 < 𝜌𝑔

(𝑝,𝑞)(𝑓) < ∞) where 𝑝, 𝑞 are any two positive integers. Then (𝑝, 𝑞)-

th relative generalized type 𝜎𝑔
(𝑝,𝑞)(𝑓) of entire function 𝑓 with respect to the entire function 𝑔 is defined 

as: the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1 𝑑𝑟
∞

𝑟0

,   (𝑟0 > 0) 

is convergent for 𝑘 > 𝜎𝑔
(𝑝,𝑞)(𝑓) and divergent for 𝑘 < 𝜎𝑔

(𝑝,𝑞)(𝑓). 

Definition 1.4 ({cf. [4]}): Let 𝑓, 𝑔 ∈ Α(Κ). The (𝑝, 𝑞)-th relative generalized weak type σg
(p,q)(f), of entire 

function f with respect to the entire function g having finite positive (p, q)-th relative lower order λg
(p,q)(f) 

is defined as 

𝜏𝑔
(𝑝,𝑞)(𝑓) = lim

𝑟→+∞
inf

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)
𝜆𝑔
(𝑝,𝑞)

(𝑓)
, where 𝑝, 𝑞 are any two positive integers. 

Definition 1.5: Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions having finite positive (𝑝, 𝑞)-th relative 

generalized lower order 𝜆𝑔
(𝑝,𝑞)(𝑓), (0 < 𝜆𝑔

(𝑝,𝑞)(𝑓) < ∞) where 𝑝, 𝑞 are any two positive integers. Then 

(𝑝, 𝑞)-th relative generalized weak type 𝜏𝑔
(𝑝,𝑞)(𝑓) of entire function 𝑓 with respect to the entire function 

𝑔 is defined as: the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1 𝑑𝑟
∞

𝑟0

,   (𝑟0 > 0) 

is convergent for 𝑘 > 𝜏𝑔
(𝑝,𝑞)(𝑓) and divergent for 𝑘 < 𝜏𝑔

(𝑝,𝑞)(𝑓). 
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2 Material and Methods 

Definition 2.1 ({cf. [4]}): Let 𝑓, 𝑔 ∈ Α(Κ). The (𝑝, 𝑞)-th relative type of 𝑓 with respect to 𝑔 having finite 

positive (𝑝, 𝑞)-th relative order 𝜎𝑔
(𝑝,𝑞)(𝑓) is defined as 

𝜎𝑔
(𝑝,𝑞)(𝑓) = lim

𝑟→+∞
inf

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)
𝜌𝑔

(𝑝,𝑞)
(𝑓)

, where 𝑝, 𝑞 are any two positive integers. 

Definition 2.2: Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions having finite positive (𝑝, 𝑞)-th relative 

generalized order 𝜌𝑔
(𝑝,𝑞)(𝑓), (0 < 𝜌𝑔

(𝑝,𝑞)(𝑓) < ∞) where 𝑝, 𝑞 are any two positive integers. Then (𝑝, 𝑞)-

th relative generalized lower type 𝜎𝑔
(𝑝,𝑞)(𝑓) of entire function 𝑓 with respect to the entire function 𝑔 is 

defined as: the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent for 𝑘 > 𝜎𝑔
(𝑝,𝑞)(𝑓) and divergent for 𝑘 < 𝜎𝑔

(𝑝,𝑞)(𝑓). 

Definition 2.3 ({cf. [4]}): Let 𝑓, 𝑔 ∈ Α(Κ). The growth indicator 𝜏�̅�
(𝑝,𝑞)(𝑓) of entire function 𝑓 with respect 

to the entire function 𝑔 having finite positive (𝑝, 𝑞)-th relative lower order 𝜆𝑔
(𝑝,𝑞)(𝑓) is defined as 

𝜏�̅�
(𝑝,𝑞)(𝑓) = lim

𝑟→+∞
sup

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)
𝜆𝑔
(𝑝,𝑞)

(𝑓)
, where 𝑝, 𝑞 are any two positive integers. 

Definition 2.4: Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions having finite positive (𝑝, 𝑞)-th relative 

generalized order 𝜆𝑔
(𝑝,𝑞)(𝑓), (0 < 𝜆𝑔

(𝑝,𝑞)(𝑓) < ∞) where 𝑝, 𝑞 are any two positive integers. Then the 

growth indicator 𝜏�̅�
(𝑝,𝑞)(𝑓) of entire function 𝑓 with respect to the entire function 𝑔 is defined as: the 

integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent for 𝑘 > 𝜏�̅�
(𝑝,𝑞)(𝑓) and divergent for 𝑘 < 𝜏�̅�

(𝑝,𝑞)(𝑓). 

Lemma 2.1:  Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions and let the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp{(log[𝑞−1] 𝑟)𝐴}]𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent for 0 < 𝐴 < ∞. Then 

lim
𝑟→∞

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp{(log[𝑞−1] 𝑟)𝐴}]𝑘
= 0. 

Proof: Since the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp{(log[𝑞−1] 𝑟)𝐴}]𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent then 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp{(log[𝑞−1] 𝑟)𝐴}]𝑘+1

∞

𝑟0

𝑑𝑟 < 𝜖 𝑖𝑓   𝑟0 > 𝑅(𝜖). 

𝑖. 𝑒., ∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp{(log[𝑞−1] 𝑟)𝐴}]𝑘+1
𝑑𝑟

exp{(log[𝑞−1] 𝑟0)
𝐴
}+𝑟0

𝑟0

< 𝜖. 
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Since log[𝑝−2]|𝑔|̂(|𝑓|(𝑟)) increases with 𝑟, so 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp{(log[𝑞−1] 𝑟)𝐴}]𝑘+1
𝑑𝑟

exp{(log[𝑞−1] 𝑟0)
𝐴
}+𝑟0

𝑟0

≥
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟0))

[exp{(log[𝑞−1] 𝑟0)𝐴}]𝑘+1
. exp {(log[𝑞−1] 𝑟0)

𝐴
} 

i.e., for all large values of 𝑟, 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp{(log[𝑞−1] 𝑟)𝐴}]𝑘+1
𝑑𝑟

exp{(log[𝑞−1] 𝑟0)
𝐴
}+𝑟0

𝑟0

≥
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟0))

[exp{(log[𝑞−1] 𝑟0)𝐴}]𝑘
 

so that 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟0))

[exp{(log[𝑞−1] 𝑟0)𝐴}]𝑘
<  𝜖 𝑖𝑓   𝑟0 > 𝑅(𝜖). 

𝑖. 𝑒., lim
𝑟→∞

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp{(log[𝑞−1] 𝑟)𝐴}]𝑘
= 0. 

This proves the lemma. 

Now a question may arise about the equivalence of definitions of (𝑝, 𝑞)-th relative generalized type and 

(𝑝, 𝑞)-th relative generalized weak type with their integral representations. In this paper, we would like to 

establish such equivalence of Definition 1.2 and Definition 1.3, and Definition 2.1 and Definition 2.2. 

Here we also investigate some growth properties related to (𝑝, 𝑞)-th relative generalized type and (𝑝, 𝑞)-

th relative generalized weak type of entire function with respect to another entire function. 

 

3 Results and Discussion 

In this section we establish the main results of the paper. 

Theorem 3.1: If 𝑓 ∈ Α(Κ) then 𝜌(𝑓) = sup {𝑠 ∈ ]0,∞[| lim
𝑟→∞

sup
log|𝑓|(𝑟)

𝑟𝑠 > 0}. 

Proof: Let  𝑃 = sup {𝑠 ∈ ]0,∞[| lim
𝑟→∞

sup
log|𝑓|(𝑟)

𝑟𝑠 > 0}. 

Let us suppose that for some 𝑠 > 0, we have 

lim
𝑟→∞

sup
log|𝑓|(𝑟)

𝑟𝑠
= 𝑏 > 0 

From Definition of supremum, we have for arbitrary 𝜖 and for all large values of 𝑟, 
log|𝑓|(𝑟)

𝑟𝑠
≤ 𝑏 + 𝜖 

𝑖. 𝑒.,
log(log|𝑓|(𝑟))

log 𝑟
≤ 𝑠 +

log(𝑏 + 𝜖)

log 𝑟
.                         (3.1) 

Again, for a sequence of values of 𝑟 tending to ∞ 
log|𝑓|(𝑟)

𝑟𝑠
≥ 𝑏 − 𝜖 

𝑖. 𝑒.,
log(log|𝑓|(𝑟))

log 𝑟
≥ 𝑠 +

log(𝑏 − 𝜖)

log 𝑟
.                         (3.2) 

Combining Equation (3.1) and Equation (3.2) we get 

𝑠 +
log(𝑏 − 𝜖)

log 𝑟
≤

log(log|𝑓|(𝑟))

log 𝑟
≤ 𝑠 +

log(𝑏 + 𝜖)

log 𝑟
. 

Since 𝜖 > 0 is arbitrary we get that 

lim
𝑟→∞

sup
log(log|𝑓|(𝑟))

log 𝑟
= 𝑃 

𝑖. 𝑒., 𝜌(𝑓) = 𝑃. 



 
 

 
5                                                      Vol.19, No.02(IV), July-December :  2024 

This proves the theorem. 

Theorem 3.2: If 𝑓 ∈ Α(Κ) then 𝜆(𝑓) = inf {𝑠 ∈ ]0,∞[| lim
𝑟→∞

inf
log|𝑓|(𝑟)

𝑟𝑠
> 0}. 

Proof: Let 𝑄 = inf {𝑠 ∈ ]0,∞[| lim
𝑟→∞

inf
log|𝑓|(𝑟)

𝑟𝑠
> 0}. 

Let us suppose that for some 𝑠 > 0, we have 

lim
𝑟→∞

inf
log|𝑓|(𝑟)

𝑟𝑠
= 𝑑 > 0. 

From Definition of infimum, we have for arbitrary 𝜖 and for all large values of 𝑟, 
log|𝑓|(𝑟)

𝑟𝑠
≥ 𝑑 − 𝜖 

𝑖. 𝑒.,
log(log|𝑓|(𝑟))

log 𝑟
≥ 𝑠 +

log(𝑑 − 𝜖)

log 𝑟
.                         (3.3) 

Again, for a sequence of values of 𝑟 tending to ∞ 
log|𝑓|(𝑟)

𝑟𝑠
≤ 𝑑 + 𝜖 

𝑖. 𝑒.,
log(log|𝑓|(𝑟))

log 𝑟
≤ 𝑠 +

log(𝑑 + 𝜖)

log 𝑟
.                         (3.4) 

Combining Equation (3.3) and Equation (3.4) we obtain that 

𝑠 +
log(𝑑 − 𝜖)

log 𝑟
≤

log(log|𝑓|(𝑟))

log 𝑟
≤ 𝑠 +

log(𝑑 + 𝜖)

log 𝑟
. 

Since 𝜖 > 0 is arbitrary we get that 

lim
𝑟→∞

inf
log(log|𝑓|(𝑟))

log 𝑟
= 𝑄  

𝑖. 𝑒., 𝜆(𝑓) = 𝑄. 
which proves the theorem. 

Theorem 3.3: Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions having finite positive (𝑝, 𝑞)-th relative 

generalized order 𝜌𝑔
(𝑝,𝑞)(𝑓), (0 < 𝜌𝑔

(𝑝,𝑞)(𝑓) < ∞) and (𝑝, 𝑞)-th relative generalized type 𝜎𝑔
(𝑝,𝑞)(𝑓) where 

𝑝, 𝑞 are any two positive integers. Then Definition 1.2 and Definition 1.3 are equivalent. 

Proof: Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions such that 𝜌𝑔
(𝑝,𝑞)(𝑓), (0 < 𝜌𝑔

(𝑝,𝑞)(𝑓) < ∞) exists, 

where 𝑝, 𝑞 are any two positive integers. 

 Case I: Let 𝜎𝑔
(𝑝,𝑞)(𝑓) = ∞. 

Definition 1.2 ⟹ Definition 1.3. 

As 𝜎𝑔
(𝑝,𝑞)(𝑓) = ∞, from Definition (1.2) we have for an arbitrary 𝐺 > 0 and a sequence of values of 𝑟 

tending to infinity, 

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) > 𝐺. (log[𝑞−1]𝑟)
𝜌𝑔

(𝑝,𝑞)
(𝑓)

 

𝑖. 𝑒., log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) > [exp {(log[𝑞−1]𝑟)
𝜌𝑔

(𝑝,𝑞)
(𝑓)

}]

𝐺

.                           (3.5) 

If possible, let the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝐺+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

be converge. Then by Lemma 2.1, we get that 
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lim
𝑟→∞

sup
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝐺 = 0. 

So, for all sufficiently large values of 𝑟, 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟)) < [exp {(log[𝑞−1] 𝑟)
𝜌𝑔

(𝑝,𝑞)
(𝑓)

}]

𝐺

.            (3.6) 

Therefore, by Equation (3.5) and Equation (3.6) we arrive at a contradiction.  

Hence 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝐺+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is divergent where 𝐺 > 0 is finite, which is Definition 1.3. 

Now we show Definition 1.3 ⟹ Definition 1.2. 

Let 𝐺 be any positive number. Since 𝜎𝑔
(𝑝,𝑞)(𝑓) = ∞, from Definition 1.3 the divergence of the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝐺+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

gives an arbitrary positive 𝜖 and for a sequence of values of 𝑟 tending to infinity 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟)) > [exp {(log[𝑞−1]𝑟)
𝜌𝑔

(𝑝,𝑞)
(𝑓)

}]

𝐺−𝜖

 

𝑖. 𝑒., log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) > (𝐺 − 𝜖)(log[𝑞−1]𝑟)
𝜌𝑔

(𝑝,𝑞)
(𝑓)

 

𝑖. 𝑒.,
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
> 𝐺 − 𝜖. 

Since 𝐺 > 0 is arbitrary, it follows that 

lim
𝑟→∞

sup
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
= ∞ 

𝑖. 𝑒., 𝜎𝑔
(𝑝,𝑞)(𝑓) = ∞. 

Thus Definition 1.2 follows. 

Case II: Let  0 ≤ 𝜎𝑔
(𝑝,𝑞)

(𝑓) < ∞. 

First, we show that Definition 1.2 ⟹ Definition 1.3. 

Sub case (A): Let 0 < 𝜎𝑔
(𝑝,𝑞)(𝑓) < ∞. 

Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions such that  0 < 𝜎𝑔
(𝑝,𝑞)(𝑓) < ∞ exists for positive integers 𝑝, 

𝑞. Then according to Definition 1.2 for any arbitrary positive 𝜖 and for large value of 𝑟 we obtain that 

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) < (𝜎𝑔
(𝑝,𝑞)(𝑓) + 𝜖){log[𝑞−1]𝑟}

𝜌𝑔
(𝑝,𝑞)

(𝑓)
 

𝑖. 𝑒.,
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1]𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘 <
1

[exp {(log[𝑞−1]𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘−(𝜎𝑔
(𝑝,𝑞)(𝑓)+𝜖)
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Therefore, 

  ∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent for 𝑘 > 𝜎𝑔
(𝑝,𝑞)(𝑓). 

Again, by Definition 1.2 we obtained for a sequence of values of 𝑟 tending to infinity that 

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) > (𝜎𝑔
(𝑝,𝑞)(𝑓) − 𝜖){log[𝑞−1]𝑟}

𝜌𝑔
(𝑝,𝑞)

(𝑓)
 

𝑖. 𝑒., log[𝑝−2]|𝑔|̂(|𝑓|(𝑟)) > [exp {(log[𝑞−1]𝑟)
𝜌𝑔

(𝑝,𝑞)
(𝑓)

}]

(𝜎𝑔
(𝑝,𝑞)

(𝑓)−𝜖)

,                        (3.7) 

so for 𝑘 < 𝜎𝑔
(𝑝,𝑞)(𝑓), we get from Equation (3.7) that 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1]𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘 >
1

[exp {(log[𝑞−1]𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘−(𝜎𝑔
(𝑝,𝑞)(𝑓)−𝜖)

 

𝑖. 𝑒., ∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is divergent for 𝑘 < 𝜎𝑔
(𝑝,𝑞)(𝑓). 

Hence 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent for 𝑘 > 𝜎𝑔
(𝑝,𝑞)(𝑓) and divergent for 𝑘 < 𝜎𝑔

(𝑝,𝑞)(𝑓). 

Sub case (B): Let 𝜎𝑔
(𝑝,𝑞)(𝑓) = 0. 

When 𝜎𝑔
(𝑝,𝑞)(𝑓) = 0 for positive integer 𝑝, 𝑞 Definition (1.2) gives for all sufficiently large values of 𝑟 

that 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
< 𝜖. 

Then similar as before we get that 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent for 𝑘 > 0 and divergent for 𝑘 < 0. 

Thus, combining subcase (A) and subcase (B) Definition 1.3 follows. 

Now we show Definition 1.3 ⟹ Definition 1.2. 

From Definition 1.3 and arbitrary positive 𝜖, the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1]𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝜎𝑔
(𝑝,𝑞)(𝑓)+𝜖+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent. Then by Lemma 2.1 we get that 
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log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1]𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝜎𝑔
(𝑝,𝑞)

(𝑓)+𝜖
= 0. 

So, we obtain for all sufficiently large values of 𝑟 that 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1]𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝜎𝑔
(𝑝,𝑞)

(𝑓)+𝜖
< 𝜖 

𝑖. 𝑒., log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) < log 𝜖 + (𝜎𝑔
(𝑝,𝑞)(𝑓) + 𝜖){log[𝑞−1]𝑟}

𝜌𝑔
(𝑝,𝑞)

(𝑓)
, 

𝑖. 𝑒., lim
𝑟→∞

sup
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
≤ 𝜎𝑔

(𝑝,𝑞)(𝑓) + 𝜖. 

Since 𝜖 > 0 is arbitrary, it follows that 

lim
𝑟→∞

sup
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
≤ 𝜎𝑔

(𝑝,𝑞)(𝑓).             (3.8) 

On the other hand the divergence of the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝜎𝑔
(𝑝,𝑞)(𝑓)−𝜖+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

implies that there exists a sequence of values of 𝑟 tending to infinity such that 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1]𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝜎𝑔
(𝑝,𝑞)(𝑓)−𝜖+1

>
1

[exp {(log[𝑞−1]𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

1+𝜖 , 

𝑖. 𝑒., log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) < (𝜎𝑔
(𝑝,𝑞)(𝑓) − 2𝜖){log[𝑞−1]𝑟}

𝜌𝑔
(𝑝,𝑞)

(𝑓)
, 

𝑖. 𝑒.,
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
> (𝜎𝑔

(𝑝,𝑞)(𝑓) − 2𝜖). 

Since 𝜖 > 0 is arbitrary, it follows from above that 

lim
𝑟→∞

sup
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
≥ 𝜎𝑔

(𝑝,𝑞)(𝑓).             (3.9) 

So from Equation (3.8) and Equation (3.9) we obtain that 

lim
𝑟→∞

sup
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
= 𝜎𝑔

(𝑝,𝑞)(𝑓).  

This proves the theorem. 

Remark 3.1 We give an example below which validates Theorem 3.3. 

Example 1: Let 𝑓(𝑧) = 𝑧, 𝑔(𝑧) = log 𝑧 , (𝑧 > 0), 𝑝 = 3 and 𝑞 = 2. So �̂�(𝑧) = exp(𝑧) 

𝜌𝑔
(𝑝,𝑞)(𝑓) = lim

𝑟→∞
sup

log[𝑝]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞] 𝑟)
= lim

𝑟→∞
sup

log[3] exp(𝑟)

log[2] 𝑟
 

= lim
𝑟→∞

sup
log[2] exp(𝑟)

log[2] 𝑟
= 1. 
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Again 

𝜎𝑔
(𝑝,𝑞)(𝑓) = lim

𝑟→∞
sup

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
= lim

𝑟→∞
sup

log[2] exp(𝑟)

log[1] 𝑟
 

= lim
𝑟→∞

sup
log 𝑟

log 𝑟
= 1. 

Next if we take 𝑘 = 2, that is 𝑘 > 𝜎𝑔
(𝑝,𝑞)(𝑓) we see that the value of the integral for 𝑟0 > 0, 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟 = ∫
log exp(𝑟)

[exp(log 𝑟)]2+1

∞

𝑟0

𝑑𝑟 = ∫
1

𝑟2

∞

𝑟0

𝑑𝑟 = [
1

𝑟
]
𝑟0

∞

=
1

𝑟0
, 

which is convergent. Next if we take 𝑘 = 0, that is 𝑘 < 𝜎𝑔
(𝑝,𝑞)(𝑓) we see that the value of the integral for 

𝑟0 > 0, 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟 = ∫
log exp(𝑟)

[exp(log 𝑟)]0+1

∞

𝑟0

𝑑𝑟 = ∫
𝑟

𝑟

∞

𝑟0

𝑑𝑟 = [𝑟]𝑟0
∞ = ∞, 

which is divergent. 

Theorem 34.: Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions having finite positive (𝑝, 𝑞)-th relative 

generalized lower order 𝜆𝑔
(𝑝,𝑞)(𝑓), (0 < 𝜆𝑔

(𝑝,𝑞)(𝑓) < ∞) and (𝑝, 𝑞)-th relative generalized weak type 

𝜏𝑔
(𝑝,𝑞)(𝑓) where 𝑝, 𝑞 are any two positive integers. Then Definition 1.4 and Definition 1.5 are equivalent. 

Proof:   Case I: Let 𝜏𝑔
(𝑝,𝑞)(𝑓) = ∞ 

Definition 1.4 ⟹ Definition 1.5. 

As 𝜏𝑔
(𝑝,𝑞)(𝑓) = ∞, from Definition (1.4) we get for an arbitrary positive 𝐺 and for all sufficient large 

values of 𝑟 that, 

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) > 𝐺. (log[𝑞−1]𝑟)
𝜆𝑔

(𝑝,𝑞)
(𝑓)

 

𝑖. 𝑒., log[𝑝−2]|𝑔|̂(|𝑓|(𝑟)) > [exp {(log[𝑞−1]𝑟)
𝜆𝑔

(𝑝,𝑞)
(𝑓)

}]

𝐺

.                           (3.10) 

If possible, let the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝐺+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

be converge. Then by Lemma 2.1 we obtain that 

lim
𝑟→∞

inf
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝐺 = 0. 

So, for a sequence of values of r tending to infinity, we get that 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟)) < [exp {(log[𝑞−1] 𝑟)
𝜆𝑔

(𝑝,𝑞)
(𝑓)

}]

𝐺

.            (3.11) 

Therefore, by Equation (3.10) and Equation (3.11) we arrive at a contradiction.  

Hence 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝐺+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 
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is divergent, whenever 𝐺 is finite which is Definition 1.5. 

Now we show Definition 1.5 ⟹ Definition 1.4. 

Let 𝐺 be any positive number. Since 𝜏𝑔
(𝑝,𝑞)(𝑓) = ∞, from Definition 1.5 the divergence of the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝐺+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

gives an arbitrary positive 𝜖 and for all sufficiently large values of 𝑟 that 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟)) > [exp {(log[𝑞−1]𝑟)
𝜆𝑔

(𝑝,𝑞)
(𝑓)

}]

𝐺−𝜖

 

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) > (𝐺 − 𝜖)(log[𝑞−1]𝑟)
𝜆𝑔

(𝑝,𝑞)
(𝑓)

 

𝑖. 𝑒.,
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
> 𝐺 − 𝜖 

𝑖. 𝑒., lim
𝑟→∞

inf
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
≥ 𝐺 − 𝜖 

Since 𝐺 > 0 is arbitrary, it follows that 

lim
𝑟→∞

inf
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
= ∞ 

𝑖. 𝑒., 𝜏𝑔
(𝑝,𝑞)(𝑓) = ∞ 

Thus Definition 1.4 follows. 

Case II: Let 0 ≤ 𝜏𝑔
(𝑝,𝑞)(𝑓) < ∞. 

First we show that Definition 1.4 ⟹ Definition 1.5. 

Sub case (A): 0 < 𝜏𝑔
(𝑝,𝑞)(𝑓) < ∞. 

Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions such that 

0 < 𝜏𝑔
(𝑝,𝑞)(𝑓) < ∞ 

exists for positive integers 𝑝, 𝑞. 

Then according to Definition 1.4 for any arbitrary positive 𝜖 and for large value of 𝑟 we obtain that 

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) < (𝜏𝑔
(𝑝,𝑞)(𝑓) + 𝜖){log[𝑞−1]𝑟}

𝜆𝑔
(𝑝,𝑞)

(𝑓)
 

𝑖. 𝑒., log[𝑝−2]|𝑔|̂(|𝑓|(𝑟)) < [exp {(log[𝑞−1]𝑟)
𝜆𝑔

(𝑝,𝑞)
(𝑓)

}]

(𝜏𝑔
(𝑝,𝑞)

(𝑓)+𝜖)

, 

𝑖. 𝑒.,
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1]𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘 <
1

[exp {(log[𝑞−1]𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘−(𝜏𝑔
(𝑝,𝑞)(𝑓)+𝜖)

 

Therefore, 

        ∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent for 𝑘 > 𝜏𝑔
(𝑝,𝑞)(𝑓). 

Again, by Definition 1.4 we obtain for all sufficiently large values of r that 

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) > (𝜏𝑔
(𝑝,𝑞)(𝑓) − 𝜖){log[𝑞−1]𝑟}

𝜆𝑔
(𝑝,𝑞)

(𝑓)
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𝑖. 𝑒., log[𝑝−2]|𝑔|̂(|𝑓|(𝑟)) > [exp {(log[𝑞−1]𝑟)
𝜆𝑔

(𝑝,𝑞)
(𝑓)

}]

(𝜏𝑔
(𝑝,𝑞)

(𝑓)−𝜖)

,                        (3.12) 

so for 𝑘 < 𝜏𝑔
(𝑝,𝑞)(𝑓), we get from Equation (3.12) that 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1]𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘 >
1

[exp {(log[𝑞−1]𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘−(𝜏𝑔
(𝑝,𝑞)(𝑓)−𝜖)

 

Therefore, 

       ∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is divergent for 𝑘 < 𝜏𝑔
(𝑝,𝑞)(𝑓).  

Hence 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent for 𝑘 > 𝜏𝑔
(𝑝,𝑞)(𝑓) and divergent for 𝑘 < 𝜏𝑔

(𝑝,𝑞)(𝑓). 

Sub case (B): Let 𝜏𝑔
(𝑝,𝑞)(𝑓) = 0. 

When 𝜏𝑔
(𝑝,𝑞)(𝑓) = 0 for positive integers 𝑝, 𝑞 Definition (1.4) gives for a sequence of values of 𝑟 tending 

to infinity that 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
< 𝜖. 

Then similar as before we get, 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent for 𝑘 > 0 and divergent for 𝑘 < 0. 

Thus, combining subcase (A) and subcase (B) Definition 1.5 follows. 

Now we show Definition 1.5 ⟹ Definition 1.4. 

From Definition 1.5 and arbitrary positive 𝜖, the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1]𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝜏𝑔
(𝑝,𝑞)(𝑓)+𝜖+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent. Then by Lemma 2.1 we get that 

 lim
𝑟→∞

inf
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1]𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝜏𝑔
(𝑝,𝑞)

(𝑓)+𝜖
= 0. 

So, we obtain for all sufficiently large values of 𝑟 that 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1]𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝜏𝑔
(𝑝,𝑞)

(𝑓)+𝜖
< 𝜖 
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𝑖. 𝑒., log[𝑝−2]|𝑔|̂(|𝑓|(𝑟)) < 𝜖. [exp {(log[𝑞−1]𝑟)
𝜆𝑔

(𝑝,𝑞)
(𝑓)

}]

(𝜏𝑔
(𝑝,𝑞)

(𝑓)+𝜖)

 

𝑖. 𝑒., log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) < log 𝜖 + (𝜏𝑔
(𝑝,𝑞)(𝑓) + 𝜖){log[𝑞−1]𝑟}

𝜆𝑔
(𝑝,𝑞)

(𝑓)
 

𝑖. 𝑒., lim
𝑟→∞

inf
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
≤ 𝜏𝑔

(𝑝,𝑞)(𝑓) + 𝜖. 

Since 𝜖 > 0 is arbitrary, it follows that 

lim
𝑟→∞

inf
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
≤ 𝜏𝑔

(𝑝,𝑞)(𝑓).             (3.13) 

On the other hand the divergence of the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝜏𝑔
(𝑝,𝑞)(𝑓)−𝜖+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

implies for all sufficiently large values of 𝑟 that 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1]𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝜏𝑔
(𝑝,𝑞)(𝑓)−𝜖+1

>
1

[exp {(log[𝑞−1]𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

1+𝜖 

𝑖. 𝑒., log[𝑝−2]|𝑔|̂(|𝑓|(𝑟)) > [exp {(log[𝑞−1]𝑟)
𝜆𝑔

(𝑝,𝑞)
(𝑓)

}]

𝜏𝑔
(𝑝,𝑞)

(𝑓)−2𝜖

 

𝑖. 𝑒., log[𝑝−1]|𝑔|̂(|𝑓|(𝑟)) < (𝜏𝑔
(𝑝,𝑞)(𝑓) − 2𝜖){log[𝑞−1]𝑟}

𝜆𝑔
(𝑝,𝑞)

(𝑓)
 

𝑖. 𝑒.,
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
> (𝜏𝑔

(𝑝,𝑞)(𝑓) − 2𝜖). 

Since 𝜖 > 0 is arbitrary, it follows from above that 

lim
𝑟→∞

inf
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
≥ 𝜏𝑔

(𝑝,𝑞)(𝑓).             (3.14) 

So from Equation (3.13) and Equation (3.14) we obtain that 

lim
𝑟→∞

inf
log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
= 𝜏𝑔

(𝑝,𝑞)(𝑓).  

This proves the theorem. 

Remark 3.2 We give an example below which validates Theorem 3.4. 

Example 2: Let 𝑓(𝑧) = 𝑧, 𝑔(𝑧) = log 𝑧 , (𝑧 > 0), 𝑝 = 3 and 𝑞 = 2. So �̂�(𝑧) = exp(𝑧) 

𝜆𝑔
(𝑝,𝑞)(𝑓) = lim

𝑟→∞
inf

log[𝑝]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞] 𝑟)
= lim

𝑟→∞
inf

log[3] exp(𝑟)

log[2] 𝑟
= lim

𝑟→∞
inf

log[2]𝑟

log[2] 𝑟
= 1. 

Again 

𝜏𝑔
(𝑝,𝑞)(𝑓) = lim

𝑟→∞
inf

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
= lim

𝑟→∞
inf

log[2] exp(𝑟)

log[1] 𝑟
= lim

𝑟→∞
inf

log 𝑟

log 𝑟
= 1. 

Next if we take 𝑘 = 2, that is 𝑘 > 𝜏𝑔
(𝑝,𝑞)(𝑓) we see that the value of the integral for 𝑟0 > 0, 
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∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟 = ∫
log exp(𝑟)

[exp(log 𝑟)]2+1

∞

𝑟0

𝑑𝑟 = ∫
𝑟

𝑟3

∞

𝑟0

𝑑𝑟 = [
1

𝑟
]
𝑟0

∞

=
1

𝑟0
, 

which is convergent. Next if we take 𝑘 = 0, that is 𝑘 < 𝜏𝑔
(𝑝,𝑞)(𝑓) we see that the value of the integral for 

𝑟0 > 0, 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟 = ∫
log exp(𝑟)

[exp(log 𝑟)]0+1

∞

𝑟0

𝑑𝑟 = ∫
𝑟

𝑟

∞

𝑟0

𝑑𝑟 = [𝑟]𝑟0
∞ = ∞, 

which is divergent. 

Theorem 3.5: Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions having finite positive (𝑝, 𝑞)-th relative 

generalized order 𝜌𝑔
(𝑝,𝑞)(𝑓), (0 < 𝜌𝑔

(𝑝,𝑞)(𝑓) < ∞) and (𝑝, 𝑞)-th relative generalized lower type 𝜎𝑔
(𝑝,𝑞)(𝑓) 

where 𝑝, 𝑞 are any positive integers. Then Definition 2.1 and Definition 2.2 are equivalent. 

Proof: With the help of Lemma 2.1 and similar to the proof of Theorem 3.1 we can prove the above 

theorem. 

Theorem 3.6: Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions having finite positive (𝑝, 𝑞)-th relative 

generalized lower order 𝜆𝑔
(𝑝,𝑞)(𝑓), (0 < 𝜆𝑔

(𝑝,𝑞)(𝑓) < ∞) and the growth indicator 𝜏�̅�
(𝑝,𝑞)(𝑓) where 𝑝, 𝑞 are 

any two positive integers. Then Definition 2.3 and Definition 2.4 are equivalent. 

Proof: With the help of Lemma 2.1 and similar to the proof of Theorem 3.2 we can prove the above 

theorem. 

Theorem 3.7: Let 𝑓, 𝑔 ∈ Α(Κ) be any two entire functions such that 𝑓 is regular (𝑝, 𝑞)-th relative 

generalized growth with respect to 𝑔, i.e., 

𝜌𝑔
(𝑝,𝑞)(𝑓) = 𝜆𝑔

(𝑝,𝑞)(𝑓), (0 < 𝜆𝑔
(𝑝,𝑞)(𝑓) = 𝜌𝑔

(𝑝,𝑞)(𝑓) < ∞), 

where 𝑝, 𝑞 are any two positive integers. Then the following quantities 

(i) 𝜎𝑔
(𝑝,𝑞)(𝑓),   (ii)    𝜏𝑔

(𝑝,𝑞)(𝑓),   (iii)  𝜎𝑔
(𝑝,𝑞)(𝑓)   (iv)        𝜏�̅�

(𝑝,𝑞)(𝑓) 

are all equivalent. 

Proof: From Definition 1.5 it follows that the integral 

 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent for 𝑘 > 𝜏𝑔
(𝑝,𝑞)(𝑓) and divergent for 𝑘 < 𝜏𝑔

(𝑝,𝑞)(𝑓). 

On the other hand Definition (1.3) implies that the integral 

∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

is convergent for 𝑘 > 𝜎𝑔
(𝑝,𝑞)(𝑓) and divergent for 𝑘 < 𝜎𝑔

(𝑝,𝑞)(𝑓). 

We show (i)⟹(ii) 

Now it is obvious that all the quantities in the expression 

[
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1 −
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1] 

are non-negative type. So, 
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∫

[
 
 
 

log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1 −
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

]
 
 
 ∞

𝑟0

𝑑𝑟 ≥ 0,   (𝑟0 > 0) 

𝑖. 𝑒., ∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟 ≥ ∫
log[𝑝−2]|𝑔|̂(|𝑓|(𝑟))

[exp {(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
}]

𝑘+1

∞

𝑟0

𝑑𝑟,   (𝑟0 > 0) 

𝑖. 𝑒., 𝜏𝑔
(𝑝,𝑞)(𝑓) ≥ 𝜎𝑔

(𝑝,𝑞)(𝑓).                                                         (3.15) 

Further, 𝑓 is of regular (𝑝, 𝑞)-th relative generalized growth with respect to 𝑔. So, we get 

𝜎𝑔
(𝑝,𝑞)(𝑓) = lim

𝑟→∞
sup

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
≥ lim

𝑟→∞
inf

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
= lim

𝑟→∞
inf

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)

= 𝜏𝑔
(𝑝,𝑞)

(𝑓) 

𝑖. 𝑒., 𝜎𝑔
(𝑝,𝑞)(𝑓) ≥ 𝜏𝑔

(𝑝,𝑞)(𝑓).                                                         (3.16) 

Combining Equation (3.15) and Equation (3.16) we get 

𝜎𝑔
(𝑝,𝑞)(𝑓) = 𝜏𝑔

(𝑝,𝑞)(𝑓).                                                         (3.17) 

Now we show (ii)⟹(iii) 

Since 𝑓 is of regular (𝑝, 𝑞)-th relative generalized growth with respect to 𝑔. So, we get 

𝜏𝑔
(𝑝,𝑞)(𝑓) = lim

𝑟→∞
inf

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
= lim

𝑟→∞
inf

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
= 𝜎𝑔

(𝑝,𝑞)(𝑓) 

𝑖. 𝑒., 𝜏𝑔
(𝑝,𝑞)(𝑓) = 𝜎𝑔

(𝑝,𝑞)(𝑓).                                                         (3.18) 

Now we show (ii)⟹(iii) 

From Equation (3.17), Equation (3.18) and the condition 

𝜌𝑔
(𝑝,𝑞)(𝑓) = 𝜆𝑔

(𝑝,𝑞)(𝑓) 

it follows that  

𝑖. 𝑒., 𝜎𝑔
(𝑝,𝑞)(𝑓) = 𝜎𝑔

(𝑝,𝑞)(𝑓).                                                         (3.19) 

So, 

𝜎𝑔
(𝑝,𝑞)(𝑓) = lim

𝑟→∞
sup

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
= lim

𝑟→∞
sup

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
= 𝜏�̅�

(𝑝,𝑞)(𝑓) 

𝑖. 𝑒., 𝜎𝑔
(𝑝,𝑞)(𝑓) = 𝜏�̅�

(𝑝,𝑞)(𝑓). 

Now we show (iv)⟹(i) 

Since 𝑓 is of regular (𝑝, 𝑞)-th relative generalized growth with respect to 𝑔, we get that 

𝜏�̅�
(𝑝,𝑞)(𝑓) = lim

𝑟→∞
sup

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜆𝑔
(𝑝,𝑞)

(𝑓)
= lim

𝑟→∞
sup

log[𝑝−1]|𝑔|̂(|𝑓|(𝑟))

(log[𝑞−1] 𝑟)𝜌𝑔
(𝑝,𝑞)

(𝑓)
= 𝜎𝑔

(𝑝,𝑞)(𝑓) 

𝑖. 𝑒., 𝜏�̅�
(𝑝,𝑞)(𝑓) = 𝜎𝑔

(𝑝,𝑞)(𝑓).                                                         (3.20) 

Thus the theorem follows. 

 

4. Conclusion 

In the line of the works as carried out in the paper one may think of finding out integral representation of 

relative (𝑝, 𝑞, 𝑡)𝐿𝑡ℎΨ growth and (𝑝, 𝑞, 𝑡)𝐿∗Ψ growth of entire and meromorphic function with respect to 



 
 

 
15                                                      Vol.19, No.02(IV), July-December :  2024 

another one and this treatment can be done under the flavour of bicomplex analysis. As a consequence, 

the derivation of relevant results is still open to the future workers of this branch. 
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